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(54) VISUAL-INERTIAL ODOMETRY WITH AN EVENT CAMERA

(57) The invention relates a method for generating a motion-corrected image for visual-inertial odometry comprising
an event camera rigidly connected to an inertial measurement unit (IMU), wherein the event camera comprises pixels
arranged in an image plane that are configured to output events in presence of brightness changes in a scene at the
time they occur, wherein each event comprises the time at which it is recorded and a position of the respective pixel
that detected the brightness change, the method comprising the steps of: Acquiring at least one set of events (S), wherein
the at least one set (S) comprises a plurality of subsequent events (e); Acquiring IMU data (D) for the duration of the at
least one set (S); Generating a motion-corrected image from the at least one set (S) of events (e), wherein the mo-
tion-corrected image is obtained by assigning the position (xj) of each event (ej) recorded at its corresponding event
time (tj) at an estimated event camera pose (Ttj) to an adjusted event position 

wherein the adjusted event position 

is obtained by determining the position of the event (ej) for an estimated reference camera pose 

at a reference time 

wherein the estimated camera pose (Ttj) at the event time (tj) and the reference camera pose 
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at the reference time 

are estimated by means of the IMU data (D).
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Description

Specification

[0001] The invention relates to a method for generating a motion-corrected image from event cameras for visual-
inertial odometry as well as to a method for visual-inertial odometry with an event camera.
[0002] Event cameras, such as the Dynamic Vision Sensor (DVS), work very differently from a traditional camera.
[0003] They have independent pixels that only send information referred to as events in presence of brightness changes
in the scene at the time they occur.
[0004] Thus, the output is not an intensity image but a stream of asynchronous events particularly at microsecond
resolution, where each event comprises the time at which it is recorded and a position or an address of the respective
pixel that detected the brightness change as well as the sign of the brightness change (referred to as polarity).
[0005] Since events are caused by brightness changes over time, an event camera naturally responds to edges in
the scene in presence of relative motion.
[0006] Event cameras have numerous advantages over standard cameras: a latency in the order of microseconds,
low power consumption, and a very high dynamic range (130 dB compared to 60 dB of standard, frame-based cameras).
[0007] Most importantly, since all the pixels are independent, such sensors don’t inherently suffer from motion blur.
[0008] These properties render event cameras ideal sensors for applications where fast response and high efficiency
are crucial, and also for scenes with wide variations of illumination.
[0009] Additionally, since information is only sent in presence of brightness changes, the sensor removes inherent
redundancy of standard cameras, thus requiring a very low data rate (Kilobytes vs Megabytes). An example of such an
event camera with an IMU is the DAVIS [3].
[0010] These properties make event cameras in applications where fast response and high efficiency are important
and also in scenes with wide variations of illumination. Additionally, since information is particularly only generated when
the brightness in a pixel changes, the event camera removes inherent information redundancy of conventional frame-
based cameras, thus requiring a lower data rate.
[0011] The output of the event camera is not an intensity image but a stream of particularly asynchronous events at
microsecond resolution, where each event consists of its space-time coordinates and the sign of the brightness change
(i.e. no intensity). Since events are caused by brightness changes over time, an event camera naturally responds to
edges in the scene in presence of relative motion.
[0012] Event cameras are used for visual odometry, i.e. the task for estimating a sensors position and orientation in
space based on visual data. Visual odometry finds applications particularly in simultaneous localization and mapping
(SLAM) applications.
[0013] In the following, orientation and position are summarized under the term "pose". The orientation and position
each can comprise up to three degrees of freedom. The orientation can be described for example by the so-called Euler
angles, wherein the position can be specified by Cartesian coordinates in a specific frame of reference. Therefore, a
pose comprises particularly six degrees of freedom.
[0014] In contrast to visual odometry or visual-based SLAM, one refers to visual-inertial odometry (VIO) or visual-
inertial SLAM if not only visual data but also inertial data from an inertial measurement unit (IMU) are used for odometry
or SLAM respectively.
[0015] State-of-the-art VIO and/or SLAM algorithms are capable of large-scale tracking, with an overall drift below
0.5% of the travelled distance [7]. However, VIO still fails in a number of situations, such as high-speed motions or high-
dynamic range scenes.
[0016] In the first case, large amounts of motion blur on the images spoil the visual information, forcing the method to
rely on integration of the IMU data, resulting in large amounts of accumulated drift.
[0017] In the second case, due to the limited dynamic range of frame-based cameras, large regions on the image are
either over-, or under-exposed, which reduces drastically the amount of information exploitable.
[0018] SLAM and VIO methods can be categorized into methods comprising a non-linear optimization method, or a
filtering-based method. Due to computational constraints, for a long time, real-time odometry or SLAM algorithms were
only possible using a filtering approach, such as the Extended Kalman Filter (EKF) method [11].
[0019] However, non-linear optimization methods can provide better accuracy for a similar computational work, when
compared to filtering methods.
[0020] A non-linear optimization or non-linear programming refers to particularly the use of a non-linear objective
function with respect to the variable to be minimized or maximized. Furthermore, in the context of the current specification,
non-linear optimization particularly refers to methods that optimize the variables for past data from the expedition, and
thus iteratively or retrospectively adjusting for example the generated three-dimensional map of the scene, wherein
filtering methods are applied particularly only to a current measurement and the generated map is not adjusted retro-
spectively.
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[0021] The use of event cameras for VIO and SLAM is known by the state of the art [11]. However, the disclosed
method in [11] exhibits limited accuracy and processing speed. In [11] a filtering approach is used for SLAM, rendering
the method expectedly less accurate, as filtering methods are intrinsically less accurate than for example non-linear
optimization approaches. Non-linear optimization approaches in turn, are known to be computational expensive and are
not suited for the data structure provided by event cameras, as they require images rather than a stream of events,
limiting their use for real-time applications.
[0022] A computationally cost-efficient and accurate processing of the stream of events such that it becomes applicable
for non-linear optimization VIO and SLAM algorithms while simultaneously maintaining the inherent higher degree of
information is an unsolved problem.
[0023] Therefore, an object of the present invention is to provide a method and a computer program for generating a
motion-corrected image from event cameras for visual-inertial odometry and SLAM applications. The object is achieved
by the method having the features of claim 1.
[0024] Advantageous embodiments are described in the subclaims.
[0025] According to claim 1, a method for generating a motion-corrected image for visual-inertial odometry (VIO) or
visual-inertial SLAM comprises a particularly monocular event camera rigidly connected to an inertial measurement unit
(IMU), wherein the event camera comprises pixels arranged in an image plane that are configured to particularly only
output events in presence of brightness changes in a scene at the time they occur, wherein each event comprises the
time at which it is recorded (also referred to as event time), a particularly two-dimensional position of the respective pixel
(also referred to as an even position) that detected the brightness change as well as particularly a polarity value indicating
the sign of the brightness change. The method according to the invention further comprises the steps of:

- Acquiring at least one set of events, wherein the at least one set comprises a plurality of subsequently or simulta-
neously recorded events from the event camera, particularly wherein the event time of the earliest event and the
latest event delimit a time interval of the at least one set;

- Acquiring IMU data for the duration, particularly during the time interval of the at least one set;
- Generating a motion-corrected image from the at least one set of events, wherein the motion-corrected image is

obtained by assigning the position of each event recorded at its corresponding event time tj at an estimated event

camera pose corresponding to the event time tj to an adjusted event position, wherein the adjusted event position

is obtained by determining the position of the event in a frame of reference of the event camera and an associated

estimated reference camera pose at a reference time  wherein the frame of reference of the event camera and
the estimated camera pose at time tj as well as the reference camera pose and the corresponding frame of reference

of the event camera at time  are estimated by means of the IMU data.

[0026] The camera pose at time tj and the reference camera pose at the time  each have a frame of reference of

the event camera associated to it. The time  is also referred to as reference time.
[0027] Alternatively and equivalently, the motion-corrected image can be generated from the at least one set of events,
by adjusting the event position recorded at its corresponding event time by transforming the event position in the frame
of reference of the event camera at it the corresponding event time tj to the frame of reference of the event camera at

the reference time  

[0028] The reference time  can be the time of the earliest event comprised in the at least one set of events.
[0029] Pixel values of the motion-corrected image particularly correspond to the aggregated polarity of events from
the at least one set at the adjusted event positions.
[0030] The motion-corrected image has a greatly reduced or no motion blur, such that any subsequent evaluation of
the motion-corrected event image can yield more precise results. Particularly feature detection is greatly enhanced and
can be performed with an increased reliability, as motion blur is absent in the motion-corrected images.
[0031] The processing time for generating the motion-corrected images is well within time scales that are considered
as being real-time, i.e. particularly below 5 ms for 240 x 180 pixels, allowing the use of the method in time-sensitive
applications.
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[0032] The reference time for which the motion-corrected image is generated particularly corresponds to the earliest
or latest event time of the set. The reference pose is particularly estimated from integrating the IMU data for a set of
associated equations of motion. From an initial starting pose of the event camera it is particularly possible to estimate
any later camera pose relative to the initial camera pose.
[0033] The estimated camera pose from the IMU data can be (re-)determined more precisely with subsequent image
processing applications, such as VIO or SLAM. However it is particularly not necessary to re-generate the motion-
corrected images for a more precisely determined camera pose, even though it is possible.
[0034] The event time is particularly provided with a microsecond resolution.
[0035] The events can be ordered within the at least one set by their corresponding event times.
[0036] According to an embodiment of the invention, from the IMU data the camera pose at the event time tj is estimated

by means of a particularly homogenous transformation  of the reference camera pose  to the estimated
camera pose Ttj.

[0037] The transformation is particularly achieved by estimating a trajectory, comprising a pose of the event camera
for a plurality of time points for the duration of the set, wherein the event camera poses can be interpolated for any
specific time.

[0038] The transformation  is particularly a function that maps the frame of references of the event camera at
the respective times to each other.
[0039] According to another embodiment of the invention, for the determination of the adjusted event position for the
reference camera pose in the corresponding frame of reference of the event camera, a projection method is executed
comprising the steps of:

- Estimating for the event time of the respective event a depth information for the event position of the event in a world
reference frame for the estimated camera pose, wherein the depth information is estimated from a plurality of three-
dimensional positions of landmarks in the world reference frame;

- Providing a camera projection model that is configured to describe the projection of a three-dimensional position
onto a two-dimensional position in the image plane of the event camera;

- Using the camera projection model, the depth information and the estimated transformation to project the event
position recorded at the estimated camera pose at the corresponding event time from the image plane onto a three-
dimensional position in the world reference frame and re-projecting the three-dimensional event position from the

world reference frame onto the image plane of the camera reference pose at the reference time  

[0040] The projection method therefore comprises a transformation between the frame of reference of the event
camera and the world reference frame. As the event camera potentially changes its pose over time, landmarks and
features located in the scene which the camera records, change position and orientation in the frame of reference of
the event camera.
[0041] The world reference frame is for example fixedly associated with the surrounding scene of the camera that is
not attached to the camera.
[0042] This embodiment particularly allows to make full use of the temporal information comprised in the events that
is particularly absent in frame based cameras.
[0043] The projection model for the event camera can be for example determined by calibration measurements.
[0044] The depth information is particularly provided by landmarks located in the scene. In VIO and SLAM application
these landmarks form the map within which the camera pose is estimated.
[0045] When no landmarks are yet identified, a constant depth information can be assumed for the events. In case
the motion-corrected image is used in the context of a VIO or a SLAM algorithm, more precise information on the
landmarks positions, and thus, more precise depth information is acquired as the algorithms process new motion-
corrected images.
[0046] The depth information can be estimated for example by Delaunay triangulation, barycentric interpolation, or
just the median depth of the landmarks and assume that the depth is constant over the scene.
[0047] According to another embodiment of the invention, the motion-corrected image is given by 
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wherein I(x) is the value of the motion-corrected image at the position x, ej is the jth event in the set S of events, x’j is
the adjusted event position and δ stands for the spatial delta function, which equals one when xj = x’j and which is zero
otherwise.
[0048] According to another embodiment of the invention, the projection method is adjusting the event position ac-
cording to 

wherein xj is the position of the jth event from the set with an associated event time tj and an estimated associated

camera pose Ttj, wherein  is the transformation from the estimated camera pose at the time tj to the reference

pose of the event camera  at the time  and wherein π is the camera projection model and Z is the depth
information for the respective event position xj.

[0049] Accordingly, π-1 refers to the inverted camera projection model.
[0050] According to another embodiment of the invention, a plurality of sets is generated, particularly wherein each
set of the plurality of sets comprises events recorded temporally subsequently or simultaneously, and particularly wherein
the resulting associated time intervals are delimited by the respective earliest and latest events comprised in the respective
set, particularly wherein the plurality of sets is temporally ordered such that two subsequent sets are adjacent i.e. they
do not comprise identical events, or the sets are overlapping, i.e. they comprise the same events by a predefined number
of events, wherein for each set the corresponding motion-corrected image is generated from the respective events
comprised in the set, such that a temporal series of the motion-corrected images is obtained.
[0051] The sets can comprise the same number of events per set.
[0052] The duration of the sets can vary depending on the rate the events are recorded by the event camera. Therefore,
the motion-corrected images are particularly also generated at a variable rate. In contrast, the IMU data is particularly
acquired at a fixed frequency. Thus, the acquisition of IMU data and the generation of sets particularly happen asyn-
chronous.
[0053] This embodiment allows for subsequent VIO and SLAM algorithms to be performed on the series of motion-
corrected images.
[0054] According to another embodiment of the invention, on a series of keyframe images that consists of a plurality
of particularly selected motion-corrected images, a simultaneous localization and mapping (SLAM) method or a visual-
inertial odometry (VIO) method is performed.
[0055] The concept of particularly selecting a subset of motion-corrected images as keyframe images has the advan-
tage that the computational load can be controlled and is kept comparably low.
[0056] In the example section it is elaborated how a selection of motion-corrected images can be made.
[0057] According to another embodiment of the invention, SLAM method is a visual-inertial SLAM method, wherein
the VIO method and/or the visual-inertial SLAM method employs the keyframe images and the IMU data to obtain a
three-dimensional map comprising the landmark positions and an estimated keyframe image camera pose for each
keyframe image, particularly wherein the landmark positions and the estimated keyframe image camera pose are esti-
mated with respect to the world reference frame.
[0058] The keyframe image camera pose is particularly the reference camera pose of the respective motion-corrected
image that corresponds to the keyframe image.
[0059] In the context of the application the terms "SLAM", "SLAM method" and "SLAM algorithm" are used synony-
mously.
[0060] According to another embodiment of the invention, the visual-inertial SLAM method and/or the VIO method
comprises a non-linear optimization method, wherein the non-linear optimization method minimizes a joint cost function
JC for all keyframe images particularly by varying the estimated keyframe image camera pose Tm for each keyframe
image and the three-dimensional landmark positions ln. Here, m is an index for the M keyframe images and n is an index
for the N landmarks.
[0061] This global optimization with the joint cost function (in the literature also referred to with the term "objective
function") that particularly involves also the estimation of previously estimated camera poses and landmark positions
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(i.e. a re-evaluation of past results) allows for more precise SLAM and/or VIO results, i.e. more precise maps and camera
pose estimations, which in turn allows for longer expeditions, while the mapping and localization error remains comparably
small.
[0062] The combination of the generation of the motion-corrected images, and the non-linear optimization in a SLAM
and/or VIO algorithm allows for the fast and precise execution of the method according to the invention. This embodiment
and the dependent embodiments allow a more precise and a faster execution of SLAM and/or VIO on event based
cameras particularly in fast moving environments, where the event camera is moving rapidly relative to the surrounding
scene and the lighting conditions might be highly dynamic within the field of view of the event camera.
[0063] According to another embodiment of the invention, the joint cost function comprises a sum of an inertial error
term for each keyframe image and a re-projection error term for each landmark and for each keyframe image, wherein
the re-projection error term and the inertial error term are minimized, wherein the cost function is particularly given by: 

wherein JC is the joint cost function, M is the number of keyframe images, J(m) are the landmarks comprised in the

respective mth keyframe image,  is a re-projection error of the nth landmark in the mth keyframe,  is an

associated weighting factor for the re-projection error,  is an inertial error of the mth keyframe image and  is
the associated weighting factor of the inertial error, wherein the re-projection error is given by

 wherein zn,m is an estimated two-dimensional landmark position of the nth landmark in

the mth keyframe image, π is the camera projection model, and  is a particularly homogenous transformation of a
camera frame of reference to the world reference frame for the mth keyframe image for the varied camera pose, ln is

the estimated three-dimensional landmark position, wherein  (and thus the camera pose Tm for the mth keyframe

image) and ln are varied, wherein the inertial error  is estimated from the difference between the estimated camera
pose from the IMU data for the mth keyframe image and the varied camera pose Tm.
[0064] According to another embodiment of the invention, the method is executed and executable more than 100
times per second, particularly more than 200 times per second.
[0065] Such execution speed is also referred to with the term "real-time", as the time lag between camera acquisition
and the generation of the motion-corrected image as well as the determination of the camera pose and the updated map
(i.e. landmark positions) is not or almost unnoticeable by a person.
[0066] According to another embodiment of the invention, the number of events per set is more than 103 and particularly
less than 106 particularly for an event camera comprising 240 x 180 pixels.
[0067] With this number of events a reliable processing for subsequent SLAM algorithms is granted.
[0068] According to another embodiment of the invention, the sets are overlapping by more than 102 events or wherein
the sets not overlapping, i.e. particularly adjacent to each other, particularly for an event camera comprising 240 x 180
pixels.
[0069] The problem according to the invention is furthermore solved by a method for visual-inertial odometry with an
event camera, wherein the event camera is rigidly connected to an inertial measurement unit (IMU), wherein the event
camera comprises pixels that are configured to output events in presence of brightness changes in a scene at the time
they occur, wherein each event comprises the time at which it is recorded (also referred to as event time) and a position
(also referred to as event position) of the respective pixel that detected the brightness change, the method comprising
the steps of:

- Acquiring IMU data with the IMU unit;

- Acquiring a plurality of sets each comprising a plurality of events;

- For each set generating an images from the events comprised in the respective set, wherein each image is obtained
by assigning the event position to a pixel coordinate of the image, such that a series of images is obtained;
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- Perform on a series of keyframe images that consists of plurality of images from the series of images, a visual inertial
simultaneous localization and mapping (SLAM) method and/or a visual inertial odometry (VIO) method, wherein the
VIO method and/or the visual-inertial SLAM method employ the keyframe images and the IMU data to obtain a
three-dimensional map comprising the landmark positions and an estimated keyframe image camera pose for each
keyframe image wherein, the VIO method and/or the visual-inertial SLAM method comprises a non-linear optimization
method, wherein the non-linear optimization method minimizes a joint cost function for all keyframe images, partic-
ularly by varying the estimated keyframe image camera pose for each keyframe image and the three-dimensional
landmark positions.

[0070] The method allows for a rapid and accurate execution of SLAM and/or VIO algorithms such that particularly in
real time or with a time lag of less than 10 ms per processed image (with an camera size of 240 x 180 pixels), a map of
the surrounding scene of the event camera and its pose in the scene can be obtained.
[0071] The obtained accuracy and processing speed is exceeding state of the art methods for event camera based
SLAM or VIO algorithms. This is particularly due to the use of the non-linear optimization method.
[0072] The concept of particularly selecting a subset of motion-corrected images as keyframe images has the advan-
tage that the computational load can be controlled and is kept lower.
[0073] The keyframe image camera pose is particularly the reference camera pose of the respective image that
corresponds to the keyframe image.
[0074] In the example section it is elaborated how a selection of motion-corrected images can be made.
[0075] According to another embodiment of the invention, the joint cost function comprises a sum of an inertial error
term for each keyframe image and a re-projection error term for each keyframe image and for each landmark comprised
in the respective keyframe image, wherein the re-projection error term and the inertial error term are minimized.
[0076] According to another embodiment of the invention, the cost function is particularly given by: 

wherein JC is the joint cost function, M is the number of keyframe images, l(m) are the landmarks comprised in the

respective mth keyframe image,  is a re-projection error of the nth landmark in the mth keyframe,  is an

associated weighting factor for the re-projection error,  is an inertial error of the mth keyframe image and  is
the associated weighting factor of the inertial error.
[0077] According to another embodiment of the invention, the re-projection error is given by

 wherein zn,m is an estimated two-dimensional landmark position of the nth landmark in the

mth keyframe image, π a camera projection model, and  is a particularly homogenous transformation of a camera
frame of reference to a world reference frame for the mth keyframe image for the varied camera pose, ln is the estimated

three-dimensional landmark position, wherein  and ln are varied, wherein the inertial error  is estimated from
the difference between the estimated camera pose from the IMU data for the mth keyframe image and the varied camera
pose Tm.
[0078] According to another embodiment of the invention, the method is executed and executable more than 100
times per second, particularly more than 200 times per second.
[0079] Such execution speed is also referred to with the term "real-time", as the time lag between camera acquisition
and the generation of the motion-corrected image as well as the determination of the camera pose and the updated map
(i.e. landmark positions) is not or almost unnoticeable by a person.
[0080] According to another embodiment of the invention, the number of events per set is more than 103 and particularly
less than 106 particularly for an event camera comprising 240 x 180 pixels.
[0081] With this number of events a reliable processing for subsequent SLAM algorithms is granted.
[0082] According to another embodiment of the invention, the sets are overlapping by more than 102 events or wherein
the sets not overlapping, i.e. particularly adjacent to each other, particularly for an event camera comprising 240 x 180
pixels.
[0083] The problem according to the invention is also solved by a computer program comprising computer program
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code, wherein the computer program code is configured to execute the method according to the invention, when the
computer program is executed on a computer.
[0084] The terms ’processor’ or ’computer’, or system thereof, are used herein as ordinary context of the art, such as
a general purpose processor or a micro-processor, RISC processor, or DSP, possibly comprising additional elements
such as memory or communication ports. Optionally or additionally, the terms ’processor’ or ’computer’ or derivatives
thereof denote an apparatus that is capable of carrying out a provided or an incorporated program and/or is capable of
controlling and/or accessing data storage apparatus and/or other apparatus such as input and output ports. The terms
’processor’ or ’computer’ denote also a plurality of processors or computers connected, and/or linked and/or otherwise
communicating, possibly sharing one or more other resources such as a memory.
[0085] The terms ’software’, ’program’, ’software procedure’ or ’procedure’ or ’software code’ or ’code’ or ’application’
or ’app’ may be used interchangeably according to the context thereof, and denote one or more instructions or directives
or circuitry for performing a sequence of operations that generally represent an algorithm and/or other process or method.
The program is stored in or on a medium such as RAM, ROM, or disk, or embedded in a circuitry accessible and
executable by an apparatus such as a processor or other circuitry.
[0086] The processor and program may constitute the same apparatus, at least partially, such as an array of electronic
gates, such as FPGA or ASIC, designed to perform a programmed sequence of operations, optionally comprising or
linked with a processor or other circuitry.
[0087] As used herein, without limiting, a module represents a part of a system, such as a part of a program operating
or interacting with one or more other parts on the same unit or on a different unit, or an electronic component or assembly
for interacting with one or more other components.
[0088] As used herein, without limiting, a process represents a collection of operations for achieving a certain objective
or an outcome.
[0089] The term ’configuring’ and/or ’adapting’ for an objective, or a variation thereof, implies using at least a software
and/or electronic circuit and/or auxiliary apparatus designed and/or implemented and/or operable or operative to achieve
the objective.
[0090] A device storing and/or comprising a program and/or data constitutes an article of manufacture. Unless otherwise
specified, the program and/or data are particularly stored in or on a non-transitory medium.
[0091] In the following Figure and Example section, the invention is explained in detail with reference to exemplary
embodiments shown in the figures. It is noted that the drawings are not to scale. Features and embodiments disclosed
in the example section even though disclosed in combination with other exemplary features can be separately combined
with other features disclosed in another embodiment. It is noted that the processing pipeline for the methods according
to the invention laid out in the following is particularly also applicable for the event images that have not been motion-
corrected. For this purpose the steps and the prerequisites for generating the motion-corrected images (particularly laid
out in claim 1 and its dependent subclaims) can be left out or replaced by a step that solely generates an image Iconv(x)
(as set out below and in claims 11 to claim 14) from the acquired events. Such an imager can be processed with the
non-linear optimization method as laid below and throughout the description. This is particularly suitable in case rapid
scene changes are not to be expected and/or when the illumination conditions are favourable. Preliminaries. In this
section, a notation is introduced that is used throughout the rest of the description. An IMU model is disclosed that is
used for the calculations comprising IMU data. Furthermore, formulas for discrete integration of the equations of motion
are provided for the IMU data.
[0092] Coordinate Frame Notation. The notation of [5] is adopted. A point P represented in a frame of reference A is
written as a position vector ArP. A transformation between frames of reference such as the world reference frame W and
the frame of reference of the event camera C is represented by a homogeneous matrix TWC that transforms points from
the world reference frame W to reference frame C. The rotational part of TWC is expressed as a rotation matrix RWC ∈
SO(3). In experiments a DAVIS sensor [3], comprising the event camera and the IMU, is used. As the event camera
and the IMU are rigidly coupled to each other, the camera frame of reference and a frame of reference of the IMU can
be readily transformed to each other. The transformation can be obtained by an extrinsic calibration of the event camera
and the IMU, using for example the Kalibr toolbox [6]. For reasons of simplicity and without loss of generality it is assumed
that the frame of references of the IMU and the event camera are identical.
[0093] IMU Model and Motion Integration. The IMU includes a 3-axis accelerometer and a 3-axis gyroscope, and
allows measuring the rotational rate and the acceleration of the IMU and thus the event camera with respect to an inertial
frame such as the world reference frame W. These measurements are referred to as IMU data.
[0094] The IMU data for acceleration a and the gyroscopic data ω, are affected by additive white noise η and slowly
varying sensor biases b
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[0095] Wherein Wg is the gravity vector in the world reference frame. Denoting the position vector and the velocity as

Wr(t) and Wv(t), respectively, the equations of motion can be numerically integrated as shown in [4].

where ηad(t) and ηgd(t) are noise variables.
[0096] This integration scheme performs very well in practice, provided the IMU sampling rate is comparably high,
e.g. above 100 Hz.
[0097] Visual-inertial odometry (VIO) is typically performed in two parallel threads:

- A front-end that takes the events from the event camera as an input. The front-end generates the motion-corrected
images and detects and tracks features and landmarks in the motion-corrected images.

- A back-end fuses the feature tracks, the landmarks and the IMU data to continuously update the current and past
camera poses.

[0098] Generation of motion-corrected images. A stream of events is provided by the event camera. The events are
split in sets Sk to generate motion-corrected images. The kth set Sk comprises a predefined number of events. Optionally
the sets can overlap by a predefined number of events that are shared by two adjacent sets. However, it is also possible
to generate non-overlapping sets that are adjacent to each other, i.e. they do not share events.

[0099] A start time  and a duration  of each set are controlled by the events, which preserves the data driven

nature of the method. The kth set Sk spans the time interval  The duration is determined by the first

and last event of the set.
[0100] In order to arrive at an image from the set, conventionally one can accumulate the events as follows: Iconv(x)
= ∑ej∈Sδ(x - xj), i.e. the intensity of the image Iconv(x) is simply the sum of the events that comprise an event position xj
= x. However, this yields an event image that is not usable for reliable feature detection or tracking, as illustrated in Fig.
3. Small set sizes (Fig. 3A) do not convey enough information, while large set sizes (Fig. 3B) induce motion blur.
[0101] In contrast, the kth motion-corrected image is generated from the kth set Sk of events as follows (see e.g. Fig.
2 and Fig. 3C). 

where x’j is the adjusted event position, obtained by transferring the jth event recorded at time tj with an event position

xj in a frame of reference Ctj of the event camera at time tj to a frame of reference  of the event camera associated

to a reference camera pose  at the time  This transfer is given by: 
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where xj is the position of the jth event from the set with an associated event time tj and an estimated associated camera

pose Ttj, wherein  is the transformation between the frames of reference Ctj ,  of the event camera for the

respective time points from the estimated camera pose Ttj at the time tj to the reference pose of the event camera 

at the time  and wherein π is the camera projection model and Z is the depth information for the respective event
position xj.

[0102] The incremental transformation  is obtained through integration of the equations of motion (see.

Eq. 4) for the IMU data acquired during the time interval  The reference pose  and the IMU biases
b are known from the state estimation thread. The remaining quantities required to evaluate Eq. (6) are the transformation

 which can be linearly interpolated from  and the camera pose  at the time  in the
space of rigid-body motion transformations. Furthermore, Z(xj) is estimated using two-dimensional linear interpolation

(on the image plane) of the landmarks, re-projected on the frame of reference Ctj of the camera pose Ttj .Alternatively,

the median can be used instead of interpolating the depth information Z(xj). Another option is to use three-dimensional

Delaunay triangulation to interpolate the sparse depth information Z(xj).

[0103] Feature detection. New features are detected whenever the number of feature tracks falls below a certain
threshold, or if the current motion-corrected image is selected as a keyframe image (see below). A so-called FAST
corner detector [9] on the motion-corrected image can be used for this purpose. A bucketing grid is used to ensure that
the features are evenly distributed over the motion-corrected image.
[0104] Feature Tracking and Landmark Triangulation. Two types of landmarks are maintained: candidate landmarks,
and persistent landmarks, whose three-dimensional position in space has been successfully triangulated. Newly extracted
features are initialized as candidate landmarks, and are tracked across the motion-corrected images. As soon as a
candidate landmark can be reliably triangulated (i.e. with bearing rays enclosing an angle greater than e.g. 5°), it is
converted to a persistent landmark, and added to the map.
[0105] Both types of landmarks are tracked in subsequent motion-corrected images Ik(x) and Ik+1(x) using pyramidal

Lukas-Kanade tracking [2]. The incremental transformation  (integrated from the IMU data) for the time interval

between  is used to predict the feature position in Ik+1(x). The patches around each feature are warped

through an affine warp, computed using  prior to pyramidal alignment. Landmarks that are not successfully
tracked in the current motion-corrected event image are discarded immediately. The depth associated to persistent
landmarks is used in that step. If it is not known, then only the incremental rotation is used.
[0106] Outlier Filtering. Two-point RANSAC [10] is used (using the relative orientation between the current motion-
corrected image and the last keyframe image) to further filter out outlier feature tracks. This is done between the current
motion-corrected image and the last keyframe image.
[0107] Keyframe Image Selection. A new keyframe image is selected either when the number of tracked features falls
below a predefined threshold, or when the distance to the last keyframe image (scaled by the median scene depth)
reaches a minimum threshold.
[0108] Initialization. To initialize the SLAM method, the first motion-corrected images are added to the back-end without
initializing any feature track. The back-end in turn estimates the initial attitude of the sensor by observing the gravity
direction. The displacement between the subsequent motion-corrected images is then estimated by integrating IMU data.
[0109] Back-End. In this section, it is exemplary described how feature tracks from the event stream obtained by the
feature tracking and triangulation is fused to update the full sensor state over time.
[0110] As opposed to the Extended Kalman Filter (EKF)-based filtering employed in [11], a full smoothing approach
based on non-linear optimization on selected keyframe images is used.
[0111] This is computationally tractable by use of pre-integration theory [8, 5], that consists of combining many inertial
measurements (IMU data) between two keyframe images into a single relative motion constraint, thus avoiding to re-
integrate IMU data in each step of the optimization. This approach considerably accelerates the optimization procedure.
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The back-end implementation can be based on OKVIS [7].
[0112] Formulation of Visual-Inertial Odometry. The visual-inertial localization and mapping problem is formulated as
a joint optimization of a cost function JC that contains weighted re-projection errors and inertial error terms: 

where JC is the joint cost function, M is the number of keyframe images, J(m) are the landmarks comprised in the

respective mth keyframe image,  is a re-projection error of the nth landmark in the mth keyframe,  is the

information matrix of the landmark measurement for the re-projection error,  is an inertial error of the mth keyframe

image and  is the information matrix of the inertial error.
[0113] The optimization is carried out, not on all the keyframe images, but on a bounded set of keyframe image
composed of M keyframe images, and a sliding window containing the last H frames. In between keyframe images, the
prediction of the event camera state and pose is propagated using the IMU data that fall in between the keyframe images.
Google Ceres [1] optimizer is used to carry out the optimization.

[0114] Re-projection Error. The re-projection error is given by  wherein zn,m is an esti-
mated two-dimensional landmark position of the nth landmark in the mth keyframe image, π is the camera projection

model, and  is a particularly homogenous transformation of a camera frame of reference to the world reference
frame for the mth keyframe image for the varied camera pose, ln is the estimated three-dimensional landmark position,

wherein  (and thus the camera pose Tm for the mth keyframe image) and ln are varied.

[0115] Inertial Error. The inertial error  is estimated from the difference between the estimated camera pose from
the IMU data for the kth keyframe image and the varied camera pose Tm. The IMU equations of motion (Eq. 4) are used
to predict the current state based on the previous state. Then, the inertial errors are simply computed as the difference
between the predictions based on the previous state and the actual state. For orientation, a simple multiplicative minimal
error is used.
[0116] Keyframe Image Marginalization. Keeping all keyframe images in the Gauss-Newton system state quickly
becomes intractable. However, simply discarding measurements from past keyframe images neglects valuable infor-
mation. To overcome this problem, old keyframe images are partially marginalized out using the Schur complement on
the corresponding observations. This turns old measurements into a prior for the system, represented as summands in
the construction of the Schur complement. Details are disclosed in [7].
[0117] Parameters. The sets size can be selected for all datasets, particularly in the range of 103 to 105 events. This
translates to a set duration of about 5 to 10 milliseconds. The patch size used for feature tracking can be 32 x 32 pixels,
with 2 pyramid levels. The event camera has 240 x 180 pixels with a 1 kHz IMU (DAVIS sensor [3]).
[0118] These are exemplary parameters that can be adapted depending on the event camera and IMU used, the
environment, the desired trade-off between accuracy and performance, etc..
[0119] Fig. 1 shows a schematic time line representation (indicated by the parallel horizontal arrows) for events recorded
at different times. The events are grouped in a plurality of overlapping sets (indicated by the horizontal lines above the
time line arrow), wherein each set consists of the same number of events (4 events in the schematic case) and the
overlap of the sets is constant (namely two events on both ends of each set). The events are depicted as dots on the
upper time line arrow, wherein the earliest and latest event times of each set are written below the dots and connected
with a dashed line. Note that the lower index of the earliest and latest event times refers to the corresponding set number.
The duration of each set depends on the event time of the first (earliest) event of each set and the last (latest) event of
each set, i.e. the event rate.
[0120] Fig. 2 schematically shows how the event position is adjusted for the motion of the event camera during the
set acquisition of the kth set. Landmarks are indicates as l1 to l4. The trajectory of the event camera and its associated

camera pose is depicted as a solid, curved arrow line, wherein the camera pose  at the time  is indicated by
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a triangle. Accordingly, the camera pose  at the latest event time  of the set is shown. On the
trajectory dots represent the recording time of an event (e), and squares indicate the acquisition of IMU data (D).

[0121] The camera poses  and  are estimated by integration (see Eq. 4) of the acquired IMU data.
The intermediate camera pose Ttj at the event time tj can be estimated by interpolation.

[0122] In order to adjust the position of the event recorded at time tj for a motion-corrected image, the event position

is projected on a three-dimensional world reference frame, by means of a depth information Z obtained from the landmark
positions, and a projection model of the event camera. From the world reference frame the three-dimensional position

of the projected event is re-projected and transformed in a frame of reference of the camera at the reference time 
that corresponds to a camera pose at the reference time.
[0123] By adjusting all event positions to the frame of reference of the event camera for the reference time and the
associated reference camera pose, the motion-corrected image is obtained.
[0124] Fig. 3 shows various examples of image formation from events. Each event is depicted as a black dot at its
recorded position. Fig. 3A and Fig. 3B are images generated without adjusting the event positions. Fig. 3A shows an
example where only 3.000 events have been used to generate an image. While a motion blur is not readily detectable
(because the set time is so short, that the camera hardly moves during the time interval) the image is corrupted by noise,
owed to the small number of events.
[0125] If a greater number of events, here 30.000, is collected per set, motion blur becomes visible and prominent
(see Fig. 3B). On such images VIO or SLAM methods will not be able to reliable identify features and feature positions,
which render such images problematic for VIO or SLAM.
[0126] In Fig. 3C, a motion-corrected image according to the invention is shown. The event number is 30.000 per set.
The motion-corrected image exhibits neither motion blur nor excessive noise and is therefore ideally suited for VIO or
SLAM.
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Claims

1. A method for generating a motion-corrected image for visual-inertial odometry comprising an event camera rigidly
connected to an inertial measurement unit (IMU), wherein the event camera comprises pixels arranged in an image
plane that are configured to output events (e) in presence of brightness changes in a scene at the time they occur,
wherein each event (e) comprises the time at which it is recorded and a position of the respective pixel that detected
the brightness change, the method comprising the steps of:

- Acquiring at least one set of events (S), wherein the at least one set (S) comprises a plurality of subsequent
events (e);
- Acquiring IMU data (D) for the duration of the at least one set (S);
- Generating a motion-corrected image from the at least one set (S) of events (e), wherein the motion-corrected
image is obtained by assigning the position (xj) of each event (ej) recorded at its corresponding event time (tj)

at an estimated event camera pose (Ttj) to an adjusted event position (x’j), wherein the adjusted event position

(x’j) is obtained by determining the position of the event (ej) for an estimated reference camera pose  at

a reference time  wherein the estimated camera pose (Ttj) at the event time (tj) and the reference camera

pose  at the reference time  are estimated by means of the IMU data (D).

2. Method according to claim 1, wherein from the IMU data the camera pose (Ttj) at the event time (tj) is estimated by

means of a particularly homogenous transformation  of the reference camera pose  at the reference

time  to the estimated camera pose (Ttj).

3. Method according to claim 2, wherein for the determination of the adjusted event position (x’j) for the estimated

reference camera pose  a projection method is executed comprising the steps of:

- Estimating a depth information (Z) for each event position in a world reference frame for the estimated camera
pose (Ttj), wherein the depth information (Z) is estimated from a plurality of three-dimensional positions of
landmarks;

- Providing a camera projection model (π) that is configured to project a three-dimensional position onto a two-
dimensional position in the image plane of the event camera;

- Using the camera projection model (π), the depth information (Z) and the estimated transformation 
to project each event position recorded at the estimated camera pose at its corresponding event time from the
image plane onto a three-dimensional position in the world reference frame and re-projecting the event position

from the world reference frame onto the image plane of the camera reference pose  at the reference
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time  

4. Method according to one of the claims 1 to 3, wherein the motion-corrected image is given by 

wherein I(x) is the value of the motion-corrected image at the position x, ej is the jth event in the set S of events,
and x’j is the adjusted event position, wherein δ is the delta-function.

5. Method according to claim 3 or 4, wherein the projection method adjusts each event position according to 

wherein xj is the position of the jth event from the set with an corresponding event time tj and an estimated associated

camera pose (Ttj), wherein  is the transformation  from the estimated camera pose (Ttj) at the event

time (tj) to the reference pose of the event camera  at the reference time  wherein π is the camera

projection model (π), and Z is the depth information (Z), for the respective event position xj.

6. Method according to one of the preceding claims, wherein a plurality of sets (S) is acquired, wherein each set
particularly comprises the same predefined number of events (e), particularly wherein the resulting associated time
intervals are delimited by the respective earliest and latest events comprised in the respective set, particularly
wherein the plurality of sets (S) is temporally ordered such that two subsequent sets are temporally adjacent or
overlapping by a predefined number of events, wherein for each set the corresponding motion-corrected image is
generated, such that a temporal series of the motion-corrected images is obtained.

7. Method according to claim 6, wherein on a series of keyframe images that consists of a plurality of motion-corrected
images from the series of motion-corrected images, a simultaneous localization and mapping (SLAM) method and/or
a visual inertial odometry method is performed.

8. Method according to claim 7, wherein the SLAM method is a visual-inertial SLAM method, wherein the VIO method
and/or the visual-inertial SLAM method employ the keyframe images and the IMU data to obtain a three-dimensional
map comprising the landmark positions and an estimated keyframe image camera pose for each keyframe image,
particularly wherein the landmark positions and the estimated keyframe image camera pose are estimated with
respect to the world reference frame.

9. Method according to claim 8, wherein the visual-inertial SLAM method and/or the VIO method comprises a non-
linear optimization method, wherein the non-linear optimization method minimizes a joint cost function for all keyframe
images particularly by varying the estimated keyframe image camera pose for each keyframe image and the three-
dimensional landmark positions.

10. Method according to claim 9, wherein the joint cost function comprises a sum of an inertial error term for each
keyframe image and a re-projection error term for each landmark and for each keyframe image, wherein the re-
projection error term and the inertial error term are minimized, wherein the cost function is particularly given by: 
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wherein JC is the joint cost function, M is the number of keyframe images, l(m) are the landmarks comprised in the

respective mth keyframe image,  is a re-projection error of the nth landmark in the mth keyframe,  is

an associated weighting factor for the re-projection error,  is an inertial error of the mth keyframe image and

 is the associated weighting factor of the inertial error, particularly wherein the re-projection error is given by

   wherein zn,m is an estimated two-dimensional landmark position of the nth landmark

in the mth keyframe image, π is the camera projection model, and  is a particularly homogenous transformation
of a camera frame of reference to the world reference frame for the mth keyframe image for the varied camera pose,

ln is the estimated three-dimensional landmark position, wherein  and ln are varied, wherein the inertial error

 is estimated from the difference between the estimated camera pose from the IMU data for the mth keyframe
image and the varied camera pose Tm.

11. A method for visual-inertial odometry with an event camera, wherein the event camera is rigidly connected to an
inertial measurement unit (IMU), wherein the event camera comprises pixels that are configured to output events
in presence of brightness changes in a scene at the time they occur, wherein each event comprises the time at
which it is recorded and a position of the respective pixel that detected the brightness change, the method comprising
the steps of:

- Acquiring IMU data (D) with the IMU unit;
- Acquiring a plurality of sets (S) each comprising a plurality of events (e);
- For each set (S) generating an images from the events comprised in the respective set (S), wherein each
image is obtained by assigning the event position (x’j) to a pixel coordinate of the image, such that a series of
images is obtained;
- Perform on a series of keyframe images that consists of plurality of images from the series of images, a visual
inertial simultaneous localization and mapping (SLAM) method and/or a visual inertial odometry (VIO) method,
wherein the VIO method and/or the visual-inertial SLAM method employ the keyframe images and the IMU data
to obtain a three-dimensional map comprising the landmark positions and an estimated keyframe image camera
pose for each keyframe image

characterized in that,
the VIO method and/or the visual-inertial SLAM method comprises a non-linear optimization method, wherein the
non-linear optimization method minimizes a joint cost function for all keyframe images, particularly by varying the
estimated keyframe image camera pose for each keyframe image and the three-dimensional landmark positions.

12. Method according to claim 11, wherein the joint cost function comprises a sum of an inertial error term for each
keyframe image and a re-projection error term for each keyframe image and for each landmark comprised in the
respective keyframe image, wherein the re-projection error term and the inertial error term are minimized.

13. Method according to claim 12, wherein the cost function is particularly given by: 

wherein JC is the joint cost function, M is the number of keyframe images, l(m) are the landmarks comprised in the
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respective mth keyframe image,  is a re-projection error of the nth landmark in the mth keyframe,  is

an associated weighting factor for the re-projection error,  is an inertial error of the mth keyframe image and

 is the associated weighting factor of the inertial error.

14. Method according to claim 12 or 13, wherein the re-projection error is given by  wherein
zn,m is an estimated two-dimensional landmark position of the nth landmark in the mth keyframe image, π a camera

projection model, and  is a particularly homogenous transformation of a camera frame of reference to a world
reference frame for the mth keyframe image for the varied camera pose, ln is the estimated three-dimensional

landmark position, wherein  and ln are varied, wherein the inertial error  is estimated from the difference
between the estimated camera pose from the IMU data for the mth keyframe image and the varied camera pose Tm.

15. Computer program comprising computer program code, wherein the computer program code is configured to execute
the method according to one of the claims 1 to 10 and/or to one of the claims 11 to 14, when the computer program
is executed on a computer.
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